Embed and Project: Discrete Sampling with Universal Hashing

NeurIPS 2013 Stefano ErmonCarla P. GomesAshish SabharwalBart Selman

We consider the problem of sampling from a probability distribution defined over a high-dimensional discrete set, specified for instance by a graphical model. We propose a sampling algorithm, called PAWS, based on embedding the set into a higher-dimensional space which is then randomly projected using universal hash functions to a lower-dimensional subspace and explored using combinatorial search methods... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet