Embedded Bandits for Large-Scale Black-Box Optimization

27 Nov 2016Abdullah Al-DujailiS. Suresh

Random embedding has been applied with empirical success to large-scale black-box optimization problems with low effective dimensions. This paper proposes the EmbeddedHunter algorithm, which incorporates the technique in a hierarchical stochastic bandit setting, following the optimism in the face of uncertainty principle and breaking away from the multiple-run framework in which random embedding has been conventionally applied similar to stochastic black-box optimization solvers... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.