EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval

Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR). In this paper, we aim to improve distillation methods that pave the way for the resource-efficient deployment of such models in practice. Inspired by our theoretical analysis of the teacher-student generalization gap for IR models, we propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model. Unlike existing teacher score-based distillation methods, our proposed approach employs embedding matching tasks to provide a stronger signal to align the representations of the teacher and student models. In addition, it utilizes query generation to explore the data manifold to reduce the discrepancies between the student and the teacher where training data is sparse. Furthermore, our analysis also motivates novel asymmetric architectures for student models which realizes better embedding alignment without increasing online inference cost. On standard benchmarks like MSMARCO, we show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.