Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation

27 Aug 2019  ·  Nima Tajbakhsh, Laura Jeyaseelan, Qian Li, Jeffrey Chiang, Zhihao Wu, Xiaowei Ding ·

The medical imaging literature has witnessed remarkable progress in high-performing segmentation models based on convolutional neural networks. Despite the new performance highs, the recent advanced segmentation models still require large, representative, and high quality annotated datasets. However, rarely do we have a perfect training dataset, particularly in the field of medical imaging, where data and annotations are both expensive to acquire. Recently, a large body of research has studied the problem of medical image segmentation with imperfect datasets, tackling two major dataset limitations: scarce annotations where only limited annotated data is available for training, and weak annotations where the training data has only sparse annotations, noisy annotations, or image-level annotations. In this article, we provide a detailed review of the solutions above, summarizing both the technical novelties and empirical results. We further compare the benefits and requirements of the surveyed methodologies and provide our recommended solutions. We hope this survey article increases the community awareness of the techniques that are available to handle imperfect medical image segmentation datasets.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here