EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts

The wide reach of social media platforms, such as Twitter, have enabled many users to share their thoughts, opinions and emotions on various topics online. The ability to detect these emotions automatically would allow social scientists, as well as, businesses to better understand responses from nations and costumers. In this study we introduce a dataset of 30,000 Persian Tweets labeled with Ekman’s six basic emotions (Anger, Fear, Happiness, Sadness, Hatred, and Wonder). This is the first publicly available emotion dataset in the Persian language. In this paper, we explain the data collection and labeling scheme used for the creation of this dataset. We also analyze the created dataset, showing the different features and characteristics of the data. Among other things, we investigate co-occurrence of different emotions in the dataset, and the relationship between sentiment and emotion of textual instances. The dataset is publicly available at https://github.com/nazaninsbr/Persian-Emotion-Detection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here