Paper

Emotion-driven Piano Music Generation via Two-stage Disentanglement and Functional Representation

Managing the emotional aspect remains a challenge in automatic music generation. Prior works aim to learn various emotions at once, leading to inadequate modeling. This paper explores the disentanglement of emotions in piano performance generation through a two-stage framework. The first stage focuses on valence modeling of lead sheet, and the second stage addresses arousal modeling by introducing performance-level attributes. To further capture features that shape valence, an aspect less explored by previous approaches, we introduce a novel functional representation of symbolic music. This representation aims to capture the emotional impact of major-minor tonality, as well as the interactions among notes, chords, and key signatures. Objective and subjective experiments validate the effectiveness of our framework in both emotional valence and arousal modeling. We further leverage our framework in a novel application of emotional controls, showing a broad potential in emotion-driven music generation.

Results in Papers With Code
(↓ scroll down to see all results)