Empirical Studies on the Convergence of Feature Spaces in Deep Learning

1 Jan 2021  ·  Haoran Liu, Haoyi Xiong, Yaqing Wang, Haozhe An, Dongrui Wu, Dejing Dou ·

While deep learning is effective to learn features/representations from data, the distributions of samples in feature spaces learned by various architectures for different training tasks (e.g., latent layers of AEs and feature vectors in CNN classifiers) have not been well-studied or compared. We hypothesize that the feature spaces of networks trained by various architectures (AEs or CNNs) and tasks (supervised, unsupervised, or self-supervised learning) share some common subspaces, no matter what types of DNN architectures or whether the labels have been used in feature learning. To test our hypothesis, through Singular Value Decomposition (SVD) of feature vectors, we demonstrate that one could linearly project the feature vectors of the same group of samples to a similar distribution, where the distribution is represented as the top left singular vector (i.e., principal subspace of feature vectors), namely $\mathcal{P}$-vectors. We further assess the convergence of feature space learning using angles between $\mathcal{P}$-vectors obtained from the well-trained model and its checkpoint per epoch during the learning procedure, where a quasi-monotonic trend of convergence to small angles has been observed. Finally, we carry out case studies to connect $\mathcal{P}$-vectors to the data distribution, and generalization performance. Extensive experiments with practically-used MLP, AE and CNN architectures for classification, image reconstruction, and self-supervised learning tasks on MNIST, CIFAR-10 and CIFAR-100 datasets have been done to support our claims with solid evidences.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods