Encoder-decoder with Focus-mechanism for Sequence Labelling Based Spoken Language Understanding

6 Aug 2016  ·  Su Zhu, Kai Yu ·

This paper investigates the framework of encoder-decoder with attention for sequence labelling based spoken language understanding. We introduce Bidirectional Long Short Term Memory - Long Short Term Memory networks (BLSTM-LSTM) as the encoder-decoder model to fully utilize the power of deep learning. In the sequence labelling task, the input and output sequences are aligned word by word, while the attention mechanism cannot provide the exact alignment. To address this limitation, we propose a novel focus mechanism for encoder-decoder framework. Experiments on the standard ATIS dataset showed that BLSTM-LSTM with focus mechanism defined the new state-of-the-art by outperforming standard BLSTM and attention based encoder-decoder. Further experiments also show that the proposed model is more robust to speech recognition errors.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here