Encoding Hierarchical Information in Neural Networks helps in Subpopulation Shift

20 Dec 2021  ·  Amitangshu Mukherjee, Isha Garg, Kaushik Roy ·

Over the past decade, deep neural networks have proven to be adept in image classification tasks, often surpassing humans in terms of accuracy. However, standard neural networks often fail to understand the concept of hierarchical structures and dependencies among different classes for vision related tasks. Humans on the other hand, seem to intuitively learn categories conceptually, progressively growing from understanding high-level concepts down to granular levels of categories. One of the issues arising from the inability of neural networks to encode such dependencies within its learned structure is that of subpopulation shift -- where models are queried with novel unseen classes taken from a shifted population of the training set categories. Since the neural network treats each class as independent from all others, it struggles to categorize shifting populations that are dependent at higher levels of the hierarchy. In this work, we study the aforementioned problems through the lens of a novel conditional supervised training framework. We tackle subpopulation shift by a structured learning procedure that incorporates hierarchical information conditionally through labels. Furthermore, we introduce a notion of graphical distance to model the catastrophic effect of mispredictions. We show that learning in this structured hierarchical manner results in networks that are more robust against subpopulation shifts, with an improvement up to 3\% in terms of accuracy and up to 11\% in terms of graphical distance over standard models on subpopulation shift benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here