EncryIP: A Practical Encryption-Based Framework for Model Intellectual Property Protection

19 Dec 2023  ·  Xin Mu, Yu Wang, Zhengan Huang, Junzuo Lai, Yehong Zhang, Hui Wang, Yue Yu ·

In the rapidly growing digital economy, protecting intellectual property (IP) associated with digital products has become increasingly important. Within this context, machine learning (ML) models, being highly valuable digital assets, have gained significant attention for IP protection. This paper introduces a practical encryption-based framework called \textit{EncryIP}, which seamlessly integrates a public-key encryption scheme into the model learning process. This approach enables the protected model to generate randomized and confused labels, ensuring that only individuals with accurate secret keys, signifying authorized users, can decrypt and reveal authentic labels. Importantly, the proposed framework not only facilitates the protected model to multiple authorized users without requiring repetitive training of the original ML model with IP protection methods but also maintains the model's performance without compromising its accuracy. Compared to existing methods like watermark-based, trigger-based, and passport-based approaches, \textit{EncryIP} demonstrates superior effectiveness in both training protected models and efficiently detecting the unauthorized spread of ML models.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here