End-to-End Data Visualization by Metric Learning and Coordinate Transformation

27 Dec 2016  ·  Lilei Zheng, Ying Zhang, Stefan Duffner, Khalid Idrissi, Christophe Garcia, Atilla Baskurt ·

This paper presents a deep nonlinear metric learning framework for data visualization on an image dataset. We propose the Triangular Similarity and prove its equivalence to the Cosine Similarity in measuring a data pair. Based on this novel similarity, a geometrically motivated loss function - the triangular loss - is then developed for optimizing a metric learning system comprising two identical CNNs. It is shown that this deep nonlinear system can be efficiently trained by a hybrid algorithm based on the conventional backpropagation algorithm. More interestingly, benefiting from classical manifold learning theories, the proposed system offers two different views to visualize the outputs, the second of which provides better classification results than the state-of-the-art methods in the visualizable spaces.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here