End-to-End Multi-Task Denoising for the Joint Optimization of Perceptual Speech Metrics

Interspeech 2019 Jaeyoung KimMostafa El-KhamyJungwon Lee

Although supervised learning based on a deep neural network has recently achieved substantial improvement on speech enhancement, the existing schemes have either of two critical issues: spectrum or metric mismatches. The spectrum mismatch is a well known issue that any spectrum modification after short-time Fourier transform (STFT), in general, cannot be fully recovered after inverse short-time Fourier transform (ISTFT)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet