Paper

End-to-End Reinforcement Learning for Automatic Taxonomy Induction

We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e., detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine \textit{which} term to select and \textit{where} to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6\% on ancestor F1.

Results in Papers With Code
(↓ scroll down to see all results)