Brain Segmentation from k-space with End-to-end Recurrent Attention Network

5 Dec 2018  ·  Qiaoying Huang, Xiao Chen, Dimitris Metaxas, Mariappan S. Nadar ·

The task of medical image segmentation commonly involves an image reconstruction step to convert acquired raw data to images before any analysis. However, noises, artifacts and loss of information due to the reconstruction process are almost inevitable, which compromises the final performance of segmentation. We present a novel learning framework that performs magnetic resonance brain image segmentation directly from k-space data. The end-to-end framework consists of a unique task-driven attention module that recurrently utilizes intermediate segmentation estimation to facilitate image-domain feature extraction from the raw data, thus closely bridging the reconstruction and the segmentation tasks. In addition, to address the challenge of manual labeling, we introduce a novel workflow to generate labeled training data for segmentation by exploiting imaging modality simulators and digital phantoms. Extensive experimental results show that the proposed method outperforms several state-of-the-art methods.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here