End-to-end Source Separation with Adaptive Front-Ends

6 May 2017  ·  Shrikant Venkataramani, Jonah Casebeer, Paris Smaragdis ·

Source separation and other audio applications have traditionally relied on the use of short-time Fourier transforms as a front-end frequency domain representation step. The unavailability of a neural network equivalent to forward and inverse transforms hinders the implementation of end-to-end learning systems for these applications. We present an auto-encoder neural network that can act as an equivalent to short-time front-end transforms. We demonstrate the ability of the network to learn optimal, real-valued basis functions directly from the raw waveform of a signal and further show how it can be used as an adaptive front-end for supervised source separation. In terms of separation performance, these transforms significantly outperform their Fourier counterparts. Finally, we also propose a novel source to distortion ratio based cost function for end-to-end source separation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper