End-to-End Speech Recognition and Disfluency Removal

Disfluency detection is usually an intermediate step between an automatic speech recognition (ASR) system and a downstream task. By contrast, this paper aims to investigate the task of end-to-end speech recognition and disfluency removal. We specifically explore whether it is possible to train an ASR model to directly map disfluent speech into fluent transcripts, without relying on a separate disfluency detection model. We show that end-to-end models do learn to directly generate fluent transcripts; however, their performance is slightly worse than a baseline pipeline approach consisting of an ASR system and a disfluency detection model. We also propose two new metrics that can be used for evaluating integrated ASR and disfluency models. The findings of this paper can serve as a benchmark for further research on the task of end-to-end speech recognition and disfluency removal in the future.

PDF Abstract Findings of 2020 PDF Findings of 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here