Energy Efficient ADC Bit Allocation and Hybrid Combining for Millimeter Wave MIMO Systems

26 Sep 2019  ·  Kaushik Aryan, Tsinos Christos, Vlachos Evangelos, Thompson John ·

Low resolution analog-to-digital converters (ADCs) can be employed to improve the energy efficiency (EE) of a wireless receiver since the power consumption of each ADC is exponentially related to its sampling resolution and the hardware complexity. In this paper, we aim to jointly optimize the sampling resolution, i.e., the number of ADC bits, and analog/digital hybrid combiner matrices which provides highly energy efficient solutions for millimeter wave multiple-input multiple output systems. A novel decomposition of the hybrid combiner to three parts is introduced: the analog combiner matrix, the bit resolution matrix and the baseband combiner matrix. The unknown matrices are computed as the solution to a matrix factorization problem where the optimal, fully digital combiner is approximated by the product of these matrices. An efficient solution based on the alternating direction method of multipliers is proposed to solve this problem. The simulation results show that the proposed solution achieves high EE performance when compared with existing benchmark techniques that use fixed ADC resolutions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here