Energy-Efficient CMOS Memristive Synapses for Mixed-Signal Neuromorphic System-on-a-Chip

7 Feb 2018  ·  Vishal Saxena, Xinyu Wu, Kehan Zhu ·

Emerging non-volatile memory (NVM), or memristive, devices promise energy-efficient realization of deep learning, when efficiently integrated with mixed-signal integrated circuits on a CMOS substrate. Even though several algorithmic challenges need to be addressed to turn the vision of memristive Neuromorphic Systems-on-a-Chip (NeuSoCs) into reality, issues at the device and circuit interface need immediate attention from the community. In this work, we perform energy-estimation of a NeuSoC system and predict the desirable circuit and device parameters for energy-efficiency optimization. Also, CMOS synapse circuits based on the concept of CMOS memristor emulator are presented as a system prototyping methodology, while practical memristor devices are being developed and integrated with general-purpose CMOS. The proposed mixed-signal memristive synapse can be designed and fabricated using standard CMOS technologies and open doors to interesting applications in cognitive computing circuits.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here