Enhanced RSS-based UAV Localization via Trajectory and Multi-base Stations

3 Nov 2020  ·  YiFan Li, Feng Shu, Baihua Shi, Xin Cheng, Yaoliang Song, Jiangzhou Wang ·

To improve the localization precision of unmanned aerial vehicle (UAV), a novel framework is established by jointly utilizing multiple measurements of received signal strength (RSS) from multiple base stations (BSs) and multiple points on trajectory. First, a joint maximum likelihood (ML) of exploiting both trajectory information and multi-BSs is proposed. To reduce its high complexity, two low-complexity localization methods are designed. The first method is from BS to trajectory (BST), called LCSL-BST. First, fixing the nth BS, by exploiting multiple measurements along trajectory, the position of UAV is computed by ML rule. Finally, all computed positions of UAV for different BSs are combined to form the resulting position. The second method reverses the order, called LCSL-TBS. We also derive the Cramer-Rao lower boundary (CRLB) of the joint ML method. From simulation results, we can see that the proposed joint ML and separate LCSL-BST methods have made a significant improvement over conventional ML method without use of trajectory knowledge in terms of location performance. The former achieves the joint CRLB and the latter is of low-complexity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here