Enhancing Chart-to-Code Generation in Multimodal Large Language Models via Iterative Dual Preference Learning

3 Apr 2025  ·  Zhihan Zhang, Yixin Cao, Lizi Liao ·

Chart-to-code generation, the process of converting chart images into executable plotting scripts, provides a lossless representation of chart information, requiring models to accurately capture and summarize all visual and structural elements. However, this remains a significant challenge for multimodal large language models (MLLMs), which are not inherently well-aligned with code generation tasks. To bridge this gap, we introduce Chart2Code, a novel iterative dual preference learning framework designed to enhance MLLMs' chart-to-code generation capabilities through structured code variant generation and fine-grained dual reward signals. We validate Chart2Code across three MLLMs and find that iterative preference learning consistently improves out-of-distribution chart-to-code generation quality. Throughout this process, our dual scoring method, which evaluates both the textual code structure and its visual representation, leads to greater performance improvements, even with a reduced preference dataset size. Further analysis explores the key components of our framework and highlights the interplay between chart-to-code generation and broader chart reasoning, paving the way for future advancements in chart comprehension.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here