Enhancing Constraint Programming via Supervised Learning for Job Shop Scheduling

26 Nov 2022  ·  Yuan Sun, Su Nguyen, Dhananjay Thiruvady, XiaoDong Li, Andreas T. Ernst, Uwe Aickelin ·

Constraint programming (CP) is a powerful technique for solving constraint satisfaction and optimization problems. In CP solvers, the variable ordering strategy used to select which variable to explore first in the solving process has a significant impact on solver effectiveness. To address this issue, we propose a novel variable ordering strategy based on supervised learning, which we evaluate in the context of job shop scheduling problems. Our learning-based methods predict the optimal solution of a problem instance and use the predicted solution to order variables for CP solvers. \added[]{Unlike traditional variable ordering methods, our methods can learn from the characteristics of each problem instance and customize the variable ordering strategy accordingly, leading to improved solver performance.} Our experiments demonstrate that training machine learning models is highly efficient and can achieve high accuracy. Furthermore, our learned variable ordering methods perform competitively when compared to four existing methods. Finally, we demonstrate that hybridising the machine learning-based variable ordering methods with traditional domain-based methods is beneficial.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here