Enhancing Control Performance through ESN-Based Model Compensation in MPC for Dynamic Systems

12 Nov 2023  ·  Shuai Niu, Qing Sun, Minrui Fei, Xuqian Ju ·

Deriving precise system dynamic models through traditional numerical methods is often a challenging endeavor. The performance of Model Predictive Control is heavily contingent on the accuracy of the system dynamic model. Consequently, this study employs Echo State Networks to acquire knowledge of the unmodeled dynamic characteristics inherent in the system. This information is then integrated with the nominal model, functioning as a form of model compensation. The present paper introduces a control framework that combines ESN with MPC. By perpetually assimilating the disparities between the nominal and real models, control performance experiences augmentation. In a demonstrative example, a second order dynamic system is subjected to simulation. The outcomes conclusively evince that ESNbased MPC adeptly assimilates unmodeled dynamic attributes, thereby elevating the system control proficiency.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here