Enhancing Deep Learning with Embedded Features for Arabic Named Entity Recognition

The introduction of word embedding models has remarkably changed many Natural Language Processing tasks. Word embeddings can automatically capture the semantics of words and other hidden features. Nonetheless, the Arabic language is highly complex, which results in the loss of important information. This paper uses Madamira, an external knowledge source, to generate additional word features. We evaluate the utility of adding these features to conventional word and character embeddings to perform the Named Entity Recognition (NER) task on Modern Standard Arabic (MSA). Our NER model is implemented using Bidirectional Long Short Term Memory and Conditional Random Fields (BiLSTM-CRF). We add morphological and syntactical features to different word embeddings to train the model. The added features improve the performance by different values depending on the used embedding model. The best performance is achieved by using Bert embeddings. Moreover, our best model outperforms the previous systems to the best of our knowledge.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here