Enhancing Environmental Enforcement with Near Real-Time Monitoring: Likelihood-Based Detection of Structural Expansion of Intensive Livestock Farms

29 May 2021  ·  Ben Chugg, Brandon Anderson, Seiji Eicher, Sandy Lee, Daniel E. Ho ·

Much environmental enforcement in the United States has historically relied on either self-reported data or physical, resource-intensive, infrequent inspections. Advances in remote sensing and computer vision, however, have the potential to augment compliance monitoring by detecting early warning signs of noncompliance. We demonstrate a process for rapid identification of significant structural expansion using Planet's 3m/pixel satellite imagery products and focusing on Concentrated Animal Feeding Operations (CAFOs) in the US as a test case. Unpermitted building expansion has been a particular challenge with CAFOs, which pose significant health and environmental risks. Using new hand-labeled dataset of 145,053 images of 1,513 CAFOs, we combine state-of-the-art building segmentation with a likelihood-based change-point detection model to provide a robust signal of building expansion (AUC = 0.86). A major advantage of this approach is that it can work with higher cadence (daily to weekly), but lower resolution (3m/pixel), satellite imagery than previously used in similar environmental settings. It is also highly generalizable and thus provides a near real-time monitoring tool to prioritize enforcement resources in other settings where unpermitted construction poses environmental risk, e.g. zoning, habitat modification, or wetland protection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here