Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection

1 Jun 2024  ·  Ye Zhang, Qian Leng, Mengran Zhu, Rui Ding, Yue Wu, Jintong Song, Yulu Gong ·

The rapid advancement of Large Language Models (LLMs) has ushered in an era where AI-generated text is increasingly indistinguishable from human-generated content. Detecting AI-generated text has become imperative to combat misinformation, ensure content authenticity, and safeguard against malicious uses of AI. In this paper, we propose a novel hybrid approach that combines traditional TF-IDF techniques with advanced machine learning models, including Bayesian classifiers, Stochastic Gradient Descent (SGD), Categorical Gradient Boosting (CatBoost), and 12 instances of Deberta-v3-large models. Our approach aims to address the challenges associated with detecting AI-generated text by leveraging the strengths of both traditional feature extraction methods and state-of-the-art deep learning models. Through extensive experiments on a comprehensive dataset, we demonstrate the effectiveness of our proposed method in accurately distinguishing between human and AI-generated text. Our approach achieves superior performance compared to existing methods. This research contributes to the advancement of AI-generated text detection techniques and lays the foundation for developing robust solutions to mitigate the challenges posed by AI-generated content.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here