Ensemble forecasts in reproducing kernel Hilbert space family

29 Jul 2022  ·  Benjamin Dufée, Bérenger Hug, Etienne Mémin, Gilles Tissot ·

A methodological framework for ensemble-based estimation and simulation of high dimensional dynamical systems such as the oceanic or atmospheric flows is proposed. To that end, the dynamical system is embedded in a family of reproducing kernel Hilbert spaces (RKHS) with kernel functions driven by the dynamics. In the RKHS family, the Koopman and Perron-Frobenius operators are unitary and uniformly continuous. This property warrants they can be expressed in exponential series of diagonalizable bounded evolution operators defined from their infinitesimal generators. Access to Lyapunov exponents and to exact ensemble based expressions of the tangent linear dynamics are directly available as well. The RKHS family enables us the devise of strikingly simple ensemble data assimilation methods for trajectory reconstructions in terms of constant-in-time linear combinations of trajectory samples. Such an embarrassingly simple strategy is made possible through a fully justified superposition principle ensuing from several fundamental theorems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here