Ensemble learning of diffractive optical networks

15 Sep 2020  ·  Md Sadman Sakib Rahman, Jingxi Li, Deniz Mengu, Yair Rivenson, Aydogan Ozcan ·

A plethora of research advances have emerged in the fields of optics and photonics that benefit from harnessing the power of machine learning. Specifically, there has been a revival of interest in optical computing hardware, due to its potential advantages for machine learning tasks in terms of parallelization, power efficiency and computation speed. Diffractive Deep Neural Networks (D2NNs) form such an optical computing framework, which benefits from deep learning-based design of successive diffractive layers to all-optically process information as the input light diffracts through these passive layers. D2NNs have demonstrated success in various tasks, including e.g., object classification, spectral-encoding of information, optical pulse shaping and imaging, among others. Here, we significantly improve the inference performance of diffractive optical networks using feature engineering and ensemble learning. After independently training a total of 1252 D2NNs that were diversely engineered with a variety of passive input filters, we applied a pruning algorithm to select an optimized ensemble of D2NNs that collectively improve their image classification accuracy. Through this pruning, we numerically demonstrated that ensembles of N=14 and N=30 D2NNs achieve blind testing accuracies of 61.14% and 62.13%, respectively, on the classification of CIFAR-10 test images, providing an inference improvement of >16% compared to the average performance of the individual D2NNs within each ensemble. These results constitute the highest inference accuracies achieved to date by any diffractive optical neural network design on the same dataset and might provide a significant leapfrog to extend the application space of diffractive optical image classification and machine vision systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods