Ensemble of Neural Classifiers for Scoring Knowledge Base Triples

15 Mar 2017  ·  Ikuya Yamada, Motoki Sato, Hiroyuki Shindo ·

This paper describes our approach for the triple scoring task at the WSDM Cup 2017. The task required participants to assign a relevance score for each pair of entities and their types in a knowledge base in order to enhance the ranking results in entity retrieval tasks. We propose an approach wherein the outputs of multiple neural network classifiers are combined using a supervised machine learning model. The experimental results showed that our proposed method achieved the best performance in one out of three measures (i.e., Kendall's tau), and performed competitively in the other two measures (i.e., accuracy and average score difference).

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here