Ensemble Prediction of Time to Event Outcomes with Competing Risks: A Case Study of Surgical Complications in Crohn's Disease

7 Feb 2019  ·  Michael C Sachs, Andrea Discacciati, Åsa Everhov, Ola Olén, Erin E Gabriel ·

We develop a novel algorithm to predict the occurrence of major abdominal surgery within 5 years following Crohn's disease diagnosis using a panel of 29 baseline covariates from the Swedish population registers. We model pseudo-observations based on the Aalen-Johansen estimator of the cause-specific cumulative incidence with an ensemble of modern machine learning approaches... Pseudo-observation pre-processing easily extends all existing or new machine learning procedures to right-censored event history data. We propose pseudo-observation based estimators for the area under the time varying ROC curve, for optimizing the ensemble, and the predictiveness curve, for evaluating and summarizing predictive performance. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here