Ensembling Factored Neural Machine Translation Models for Automatic Post-Editing and Quality Estimation

WS 2017 Chris Hokamp

This work presents a novel approach to Automatic Post-Editing (APE) and Word-Level Quality Estimation (QE) using ensembles of specialized Neural Machine Translation (NMT) systems. Word-level features that have proven effective for QE are included as input factors, expanding the representation of the original source and the machine translation hypothesis, which are used to generate an automatically post-edited hypothesis... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.