Entropic estimation of optimal transport maps

24 Sep 2021  ·  Aram-Alexandre Pooladian, Jonathan Niles-Weed ·

We develop a computationally tractable method for estimating the optimal map between two distributions over $\mathbb{R}^d$ with rigorous finite-sample guarantees. Leveraging an entropic version of Brenier's theorem, we show that our estimator -- the barycentric projection of the optimal entropic plan -- is easy to compute using Sinkhorn's algorithm. As a result, unlike current approaches for map estimation, which are slow to evaluate when the dimension or number of samples is large, our approach is parallelizable and extremely efficient even for massive data sets. Under smoothness assumptions on the optimal map, we show that our estimator enjoys comparable statistical performance to other estimators in the literature, but with much lower computational cost. We showcase the efficacy of our proposed estimator through numerical examples. Our proofs are based on a modified duality principle for entropic optimal transport and on a method for approximating optimal entropic plans due to Pal (2019).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here