Composing Entropic Policies using Divergence Correction

5 Dec 2018  ·  Jonathan J. Hunt, Andre Barreto, Timothy P. Lillicrap, Nicolas Heess ·

Composing previously mastered skills to solve novel tasks promises dramatic improvements in the data efficiency of reinforcement learning. Here, we analyze two recent works composing behaviors represented in the form of action-value functions and show that they perform poorly in some situations. As part of this analysis, we extend an important generalization of policy improvement to the maximum entropy framework and introduce an algorithm for the practical implementation of successor features in continuous action spaces. Then we propose a novel approach which addresses the failure cases of prior work and, in principle, recovers the optimal policy during transfer. This method works by explicitly learning the (discounted, future) divergence between base policies. We study this approach in the tabular case and on non-trivial continuous control problems with compositional structure and show that it outperforms or matches existing methods across all tasks considered.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here