Entropy and mutual information in models of deep neural networks

We examine a class of deep learning models with a tractable method to compute information-theoretic quantities. Our contributions are three-fold: (i) We show how entropies and mutual informations can be derived from heuristic statistical physics methods, under the assumption that weight matrices are independent and orthogonally-invariant. (ii) We extend particular cases in which this result is known to be rigorously exact by providing a proof for two-layers networks with Gaussian random weights, using the recently introduced adaptive interpolation method. (iii) We propose an experiment framework with generative models of synthetic datasets, on which we train deep neural networks with a weight constraint designed so that the assumption in (i) is verified during learning. We study the behavior of entropies and mutual informations throughout learning and conclude that, in the proposed setting, the relationship between compression and generalization remains elusive.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here