Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors

We show that Entropy-SGD (Chaudhari et al., 2017), when viewed as a learning algorithm, optimizes a PAC-Bayes bound on the risk of a Gibbs (posterior) classifier, i.e., a randomized classifier obtained by a risk-sensitive perturbation of the weights of a learned classifier. Entropy-SGD works by optimizing the bound's prior, violating the hypothesis of the PAC-Bayes theorem that the prior is chosen independently of the data. Indeed, available implementations of Entropy-SGD rapidly obtain zero training error on random labels and the same holds of the Gibbs posterior. In order to obtain a valid generalization bound, we rely on a result showing that data-dependent priors obtained by stochastic gradient Langevin dynamics (SGLD) yield valid PAC-Bayes bounds provided the target distribution of SGLD is {\epsilon}-differentially private. We observe that test error on MNIST and CIFAR10 falls within the (empirically nonvacuous) risk bounds computed under the assumption that SGLD reaches stationarity. In particular, Entropy-SGLD can be configured to yield relatively tight generalization bounds and still fit real labels, although these same settings do not obtain state-of-the-art performance.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here