Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network

28 Aug 2019  ·  Jivitesh Sharma, Ole-Christoffer Granmo, Morten Goodwin ·

In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use attention modules that perform channel and spatial attention together. We use some data augmentation techniques to further boost performance. Our model is able to achieve state-of-the-art performance on all three benchmark environment sound classification datasets, i.e. the UrbanSound8K (97.52%), ESC-10 (95.75%) and ESC-50 (88.50%). To the best of our knowledge, this is the first time that a single environment sound classification model is able to achieve state-of-the-art results on all three datasets. For ESC-10 and ESC-50 datasets, the accuracy achieved by the proposed model is beyond human accuracy of 95.7% and 81.3% respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here