EPINE: Enhanced Proximity Information Network Embedding

4 Mar 2020  ·  Luoyi Zhang, Ming Xu ·

Unsupervised homogeneous network embedding (NE) represents every vertex of networks into a low-dimensional vector and meanwhile preserves the network information. Adjacency matrices retain most of the network information, and directly charactrize the first-order proximity. In this work, we devote to mining valuable information in adjacency matrices at a deeper level. Under the same objective, many NE methods calculate high-order proximity by the powers of adjacency matrices, which is not accurate and well-designed enough. Instead, we propose to redefine high-order proximity in a more intuitive manner. Besides, we design a novel algorithm for calculation, which alleviates the scalability problem in the field of accurate calculation for high-order proximity. Comprehensive experiments on real-world network datasets demonstrate the effectiveness of our method in downstream machine learning tasks such as network reconstruction, link prediction and node classification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here