Intelligence relies on an agent's knowledge of what it does not know. This capability can be assessed based on the quality of joint predictions of labels across multiple inputs. In principle, ensemble-based approaches produce effective joint predictions, but the computational costs of training large ensembles can become prohibitive. We introduce the epinet: an architecture that can supplement any conventional neural network, including large pretrained models, and can be trained with modest incremental computation to estimate uncertainty. With an epinet, conventional neural networks outperform very large ensembles, consisting of hundreds or more particles, with orders of magnitude less computation. The epinet does not fit the traditional framework of Bayesian neural networks. To accommodate development of approaches beyond BNNs, such as the epinet, we introduce the epistemic neural network (ENN) as an interface for models that produce joint predictions.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here