Equal Opportunity and Affirmative Action via Counterfactual Predictions

26 May 2019  ·  Yixin Wang, Dhanya Sridhar, David M. Blei ·

Machine learning (ML) can automate decision-making by learning to predict decisions from historical data. However, these predictors may inherit discriminatory policies from past decisions and reproduce unfair decisions. In this paper, we propose two algorithms that adjust fitted ML predictors to make them fair. We focus on two legal notions of fairness: (a) providing equal opportunity (EO) to individuals regardless of sensitive attributes and (b) repairing historical disadvantages through affirmative action (AA). More technically, we produce fair EO and AA predictors by positing a causal model and considering counterfactual decisions. We prove that the resulting predictors are theoretically optimal in predictive performance while satisfying fairness. We evaluate the algorithms, and the trade-offs between accuracy and fairness, on datasets about admissions, income, credit and recidivism.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here