Equilibria and Their Stability Do Not Depend on the Control Barrier Function in Safe Optimization-Based Control

10 Sep 2024  ·  Yiting Chen, Pol Mestres, Jorge Cortes, Emiliano Dall'Anese ·

Control barrier functions (CBFs) play a critical role in the design of safe optimization-based controllers for control-affine systems. Given a CBF associated with a desired ``safe'' set, the typical approach consists in embedding CBF-based constraints into the optimization problem defining the control law to enforce forward invariance of the safe set. While this approach effectively guarantees safety for a given CBF, the CBF-based control law can introduce undesirable equilibrium points (i.e., points that are not equilibria of the original system); open questions remain on how the choice of CBF influences the number and locations of undesirable equilibria and, in general, the dynamics of the closed-loop system. This paper investigates how the choice of CBF impacts the dynamics of the closed-loop system and shows that: (i) The CBF does not affect the number, location, and (local) stability properties of the equilibria in the interior of the safe set; (ii) undesirable equilibria only appear on the boundary of the safe set; and, (iii) the number and location of undesirable equilibria for the closed-loop system do not depend of the choice of the CBF. Additionally, for the well-established safety filters and controllers based on both CBF and control Lyapunov functions (CLFs), we show that the stability properties of equilibria of the closed-loop system are independent of the choice of the CBF and of the associated extended class-K function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here