Equilibria of Fully Decentralized Learning in Networked Systems

15 May 2023  ·  Yan Jiang, Wenqi Cui, Baosen Zhang, Jorge Cortés ·

Existing settings of decentralized learning either require players to have full information or the system to have certain special structure that may be hard to check and hinder their applicability to practical systems. To overcome this, we identify a structure that is simple to check for linear dynamical system, where each player learns in a fully decentralized fashion to minimize its cost. We first establish the existence of pure strategy Nash equilibria in the resulting noncooperative game. We then conjecture that the Nash equilibrium is unique provided that the system satisfies an additional requirement on its structure. We also introduce a decentralized mechanism based on projected gradient descent to have agents learn the Nash equilibrium. Simulations on a $5$-player game validate our results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here