Error Correction Maximization for Deep Image Hashing

6 Aug 2018  ·  Xiang Xu, Xiaofang Wang, Kris M. Kitani ·

We propose to use the concept of the Hamming bound to derive the optimal criteria for learning hash codes with a deep network. In particular, when the number of binary hash codes (typically the number of image categories) and code length are known, it is possible to derive an upper bound on the minimum Hamming distance between the hash codes. This upper bound can then be used to define the loss function for learning hash codes. By encouraging the margin (minimum Hamming distance) between the hash codes of different image categories to match the upper bound, we are able to learn theoretically optimal hash codes. Our experiments show that our method significantly outperforms competing deep learning-based approaches and obtains top performance on benchmark datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here