Error Propagation for Approximate Policy and Value Iteration

We address the question of how the approximation error/Bellman residual at each iteration of the Approximate Policy/Value Iteration algorithms influences the quality of the resulted policy. We quantify the performance loss as the Lp norm of the approximation error/Bellman residual at each iteration. Moreover, we show that the performance loss depends on the expectation of the squared Radon-Nikodym derivative of a certain distribution rather than its supremum -- as opposed to what has been suggested by the previous results. Also our results indicate that the contribution of the approximation/Bellman error to the performance loss is more prominent in the later iterations of API/AVI, and the effect of an error term in the earlier iterations decays exponentially fast.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here