Escaping Flat Areas via Function-Preserving Structural Network Modifications

Hierarchically embedding smaller networks in larger networks, e.g.~by increasing the number of hidden units, has been studied since the 1990s. The main interest was in understanding possible redundancies in the parameterization, as well as in studying how such embeddings affect critical points... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet