Estimating decision tree learnability with polylogarithmic sample complexity

NeurIPS 2020  ·  Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan ·

We show that top-down decision tree learning heuristics are amenable to highly efficient learnability estimation: for monotone target functions, the error of the decision tree hypothesis constructed by these heuristics can be estimated with polylogarithmically many labeled examples, exponentially smaller than the number necessary to run these heuristics, and indeed, exponentially smaller than information-theoretic minimum required to learn a good decision tree. This adds to a small but growing list of fundamental learning algorithms that have been shown to be amenable to learnability estimation. En route to this result, we design and analyze sample-efficient minibatch versions of top-down decision tree learning heuristics and show that they achieve the same provable guarantees as the full-batch versions. We further give "active local" versions of these heuristics: given a test point $x^\star$, we show how the label $T(x^\star)$ of the decision tree hypothesis $T$ can be computed with polylogarithmically many labeled examples, exponentially smaller than the number necessary to learn $T$.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here