Estimating Maximally Probable Constrained Relations by Mathematical Programming

4 Aug 2014  ·  Lizhen Qu, Bjoern Andres ·

Estimating a constrained relation is a fundamental problem in machine learning. Special cases are classification (the problem of estimating a map from a set of to-be-classified elements to a set of labels), clustering (the problem of estimating an equivalence relation on a set) and ranking (the problem of estimating a linear order on a set)... We contribute a family of probability measures on the set of all relations between two finite, non-empty sets, which offers a joint abstraction of multi-label classification, correlation clustering and ranking by linear ordering. Estimating (learning) a maximally probable measure, given (a training set of) related and unrelated pairs, is a convex optimization problem. Estimating (inferring) a maximally probable relation, given a measure, is a 01-linear program. It is solved in linear time for maps. It is NP-hard for equivalence relations and linear orders. Practical solutions for all three cases are shown in experiments with real data. Finally, estimating a maximally probable measure and relation jointly is posed as a mixed-integer nonlinear program. This formulation suggests a mathematical programming approach to semi-supervised learning. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here