Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds

8 Nov 2019  ·  Rong Ge, Holden Lee, Jianfeng Lu ·

Estimating the normalizing constant of an unnormalized probability distribution has important applications in computer science, statistical physics, machine learning, and statistics. In this work, we consider the problem of estimating the normalizing constant $Z=\int_{\mathbb{R}^d} e^{-f(x)}\,\mathrm{d}x$ to within a multiplication factor of $1 \pm \varepsilon$ for a $\mu$-strongly convex and $L$-smooth function $f$, given query access to $f(x)$ and $\nabla f(x)$. We give both algorithms and lowerbounds for this problem. Using an annealing algorithm combined with a multilevel Monte Carlo method based on underdamped Langevin dynamics, we show that $\widetilde{\mathcal{O}}\Bigl(\frac{d^{4/3}\kappa + d^{7/6}\kappa^{7/6}}{\varepsilon^2}\Bigr)$ queries to $\nabla f$ are sufficient, where $\kappa= L / \mu$ is the condition number. Moreover, we provide an information theoretic lowerbound, showing that at least $\frac{d^{1-o(1)}}{\varepsilon^{2-o(1)}}$ queries are necessary. This provides a first nontrivial lowerbound for the problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here