Estimating Rényi's $α$-Cross-Entropies in a Matrix-Based Way

24 Sep 2021  ·  Isaac J. Sledge, Jose C. Principe ·

Conventional information-theoretic quantities assume access to probability distributions. Estimating such distributions is not trivial. Here, we consider function-based formulations of cross entropy that sidesteps this a priori estimation requirement. We propose three measures of R\'enyi's $\alpha$-cross-entropies in the setting of reproducing-kernel Hilbert spaces. Each measure has its appeals. We prove that we can estimate these measures in an unbiased, non-parametric, and minimax-optimal way. We do this via sample-constructed Gram matrices. This yields matrix-based estimators of R\'enyi's $\alpha$-cross-entropies. These estimators satisfy all of the axioms that R\'enyi established for divergences. Our cross-entropies can thus be used for assessing distributional differences. They are also appropriate for handling high-dimensional distributions, since the convergence rate of our estimator is independent of the sample dimensionality. Python code for implementing these measures can be found at https://github.com/isledge/MBRCE

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here