Estimating the Fundamental Limits is Easier than Achieving the Fundamental Limits

We show through case studies that it is easier to estimate the fundamental limits of data processing than to construct explicit algorithms to achieve those limits. Focusing on binary classification, data compression, and prediction under logarithmic loss, we show that in the finite space setting, when it is possible to construct an estimator of the limits with vanishing error with $n$ samples, it may require at least $n\ln n$ samples to construct an explicit algorithm to achieve the limits...

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet