Estimating the Mixing Time of Ergodic Markov Chains

1 Feb 2019  ·  Geoffrey Wolfer, Aryeh Kontorovich ·

We address the problem of estimating the mixing time $t_{\mathsf{mix}}$ of an arbitrary ergodic finite-state Markov chain from a single trajectory of length $m$. The reversible case was addressed by Hsu et al. [2019], who left the general case as an open problem. In the reversible case, the analysis is greatly facilitated by the fact that the Markov operator is self-adjoint, and Weyl's inequality allows for a dimension-free perturbation analysis of the empirical eigenvalues. As Hsu et al. point out, in the absence of reversibility (which induces asymmetric pair probabilities matrices), the existing perturbation analysis has a worst-case exponential dependence on the number of states $d$. Furthermore, even if an eigenvalue perturbation analysis with better dependence on $d$ were available, in the non-reversible case the connection between the spectral gap and the mixing time is not nearly as straightforward as in the reversible case. Our key insight is to estimate the pseudo-spectral gap $\gamma_{\mathsf{ps}}$ instead, which allows us to overcome the loss of symmetry and to achieve a polynomial dependence on the minimal stationary probability $\pi_\star$ and $\gamma_{\mathsf{ps}}$. Additionally, in the reversible case, we obtain simultaneous nearly (up to logarithmic factors) minimax rates in $t_{\mathsf{mix}}$ and precision $\varepsilon$, closing a gap in Hsu et al., who treated $\varepsilon$ as constant in the lower bounds. Finally, we construct fully empirical confidence intervals for $\gamma_{\mathsf{ps}}$, which shrink to zero at a rate of roughly $1/\sqrt{m}$, and improve the state of the art in even the reversible case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here