Estimating the Unseen: Improved Estimators for Entropy and other Properties

Recently, [Valiant and Valiant] showed that a class of distributional properties, which includes such practically relevant properties as entropy, the number of distinct elements, and distance metrics between pairs of distributions, can be estimated given a SUBLINEAR sized sample. Specifically, given a sample consisting of independent draws from any distribution over at most n distinct elements, these properties can be estimated accurately using a sample of size O(n / log n)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet